A Generalized Hybrid Steepest-Descent Method for Variational Inequalities in Banach Spaces

نویسندگان

  • D. R. Sahu
  • N. C. Wong
  • J. C. Yao
چکیده

The hybrid steepest-descent method introduced by Yamada 2001 is an algorithmic solution to the variational inequality problem over the fixed point set of nonlinear mapping and applicable to a broad range of convexly constrained nonlinear inverse problems in real Hilbert spaces. Lehdili and Moudafi 1996 introduced the new prox-Tikhonov regularization method for proximal point algorithm to generate a strongly convergent sequence and established a convergence property for it by using the technique of variational distance in Hilbert spaces. In this paper, motivated by Yamada’s hybrid steepest-descent and Lehdili and Moudafi’s algorithms, a generalized hybrid steepest-descent algorithm for computing the solutions of the variational inequality problem over the common fixed point set of sequence of nonexpansive-type mappings in the framework of Banach space is proposed. The strong convergence for the proposed algorithm to the solution is guaranteed under some assumptions. Our strong convergence theorems extend and improve certain corresponding results in the recent literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid steepest-descent method with sequential and functional errors in Banach space

Let $X$ be a reflexive Banach space, $T:Xto X$ be a nonexpansive mapping with $C=Fix(T)neqemptyset$ and $F:Xto X$ be $delta$-strongly accretive and $lambda$- strictly pseudocotractive with $delta+lambda>1$. In this paper, we present modified hybrid steepest-descent methods, involving sequential errors and functional errors with functions admitting a center, which generate convergent sequences ...

متن کامل

Mann-type Steepest-descent and Modified Hybrid Steepest-descent Methods for Variational Inequalities in Banach Spaces

1Department of Mathematics, Shanghai Normal University, Shanghai; and Scientific Computing Key Laboratory of Shanghai Universities, Shanghai, China 2Department of Mathematics & Statistics, College of Science, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia; and Department of Mathematics, Aligarh Muslim University, Aligarh, India 3Department of Applied Mathematics, National S...

متن کامل

Strong Convergence Theorems for Generalized Variational Inequalities and Relatively Weak Nonexpansive Mappings in Banach Spaces

In this paper, we introduce an iterative sequence by using a hybrid generalized f−projection algorithm for finding a common element of the set of fixed points of a relatively weak nonexpansive mapping and the set of solutions of a generalized variational inequality in a Banach space. Our results extend and improve the recent ones announced by Y. Liu [Strong convergence theorems for variational ...

متن کامل

An Algorithm for Solving Triple Hierarchical Pseudomonotone Variational Inequalities

In this paper, we introduce and analyze a hybrid steepest-descent extragradient algorithm for solving triple hierarchical pseudomonotone variational inequalities in a real Hilbert space. The proposed algorithm is based on Korpelevich’s extragradient method, Mann’s iteration method, hybrid steepest-descent method and Halpern’s iteration method. Under mild conditions, the strong convergence of th...

متن کامل

A Unified Hybrid Iterative Method for Solving Variational Inequalities Involving Generalized Pseudocontractive Mappings

We study in this paper the existence and approximation of solutions of variational inequalities involving generalized pseudo-contractive mappings in Banach spaces. The convergence analysis of a proposed hybrid iterative method for approximating common zeros or fixed points of a possibly infinitely countable or uncountable family of such operators will be conducted within the conceptual framewor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010